

Lake Limerick Erosion Protection Ideas

tetratech.com

- Current Conditions
- Key Considerations
- Possible Alternatives
 - Vegetated GeoGrid
 - Articulating Concrete Blocks
 - Slopetame 2 Erosion Control System

tetratech.com 3/27/2018

Current Conditions (March 2018)

- Bank has eroded and created steeper slope, reducing island surface area
- Erosion due to wave action from boats and wind, heavy foot traffic during summer months, and fluctuating water levels
- Access and slope stability both important due to high traffic in swimming breach area
- Sand bags previously deployed as interim measure are still present, but vandals and wave induced deterioration reduce effectiveness

Key Considerations

Efficacy/Aesthetics

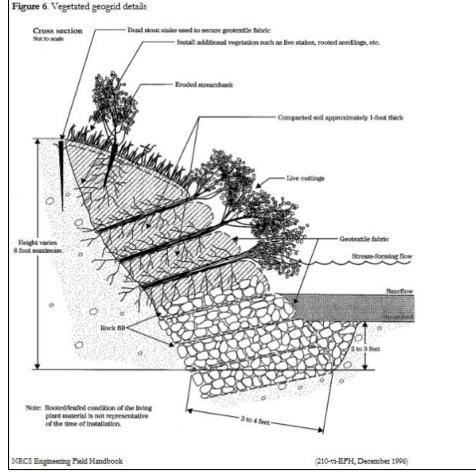
- How does the installation function under varying usage?
- Appealing to association members?

• Ability to Permit

- Identify stakeholders (Tribe, association members, etc), possible permitting agencies (Mason County, Department of Ecology, etc)
- Natural methods are preferred for permitting

Constructability

- How/When best to install?
- Site access for equipment?
- Cost
 - Balance between initial capital cost vs maintenance costs



Vegetated GeoGrid

- Utilizes "wraps" of geotextile fabric around soil or compacted gravelborrow, vegetation between wraps
- Outer layer of wraps can be overlain with fabric and covered with turf or slopereinforcing structure
- Estimated Material Costs: ~\$20-\$50/linear foot

Vegetated Geogrid

Vegetated geogrids are similar to branchpacking except that natural or synthetic geotextile materials are wrapped around each soil lift between the layers of live branch cuttings.

Vegetated GeoGrid

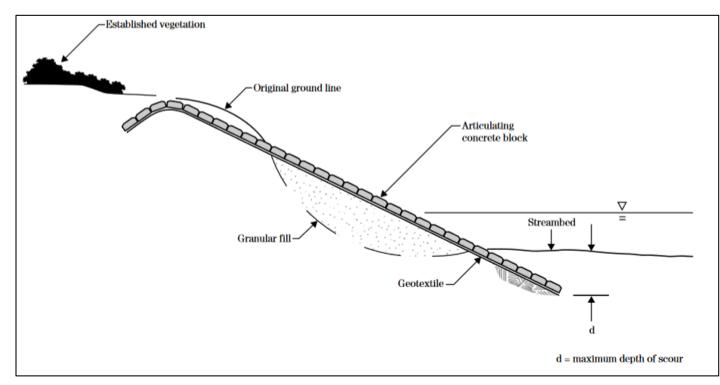
PROs

- Soil bioengineering approach allows vegetation to become established while also providing shoreline stability
- Roots of vegetation placed between the layers of the grid fabric provide additional slope stability
- Used in other projects around the area where water level moves up and down the bank (i.e. Riverview Road in Snohomish County

CONs

- Toe requires armoring using rock and/or logs (though could use combination of larger rock under pea gravel)
- May require a season for plantings to root and take hold for truly effective slope stability
- Costs can vary depending on the type/amounts of materials used

Vegetated GeoGrid


Example Photos (FEMA)

Articulating Concrete Blocks (ACB)

- Utilizes small concrete blocks connected by cabling
- Blocks are overlain on a geotextile fabric and granular filter to retain soil but still allow porewater to pass through
- Estimated Material Costs: ~\$10-\$20/square foot

TETRA TECH

Articulating Concrete Blocks (ACB)

PROs

- Provides durable bank protection with low maintenance
- Vegetation (preferably grasses) can be installed between blocks for stability
- Good, resilient option for heavy-use areas

CONs

- Proper design specs are critical to ensure that liquification beneath ACBs does not occur
- May require a season for plantings to root and take hold for truly effective slope stability
- Less of a "natural shoreline" option than other alternatives

Articulating Concrete Blocks (ACB)

Example Photos (NEH)

Slopetame² Erosion Control System

- Erosion control blanket that utilizes plastic rings and geotextile fabric to stabilize banks and provide erosion protection along slopes
- Vegetation can be planted inside the rings allowing the roots to anchor in to the soil
- This option could be used by itself or in conjunction with other methods
- Pros/Cons very similar to Vegetated GeoGrid

References

- <u>Streambank and Shoreline Stabilization</u> Georgia DNR
- Engineering with Nature FEMA
- Use of Articulating Concrete Block Revetment
 Systems for Stream Restoration and Stabilization
 Projects National Engineering Handbook (NEH)
- <u>Structural, Non-structural, and Hybrid Options for</u> <u>Shoreline Protection</u> – University of Minnesota
- <u>Slopetame2 Erosion Control System</u> Invisible Structures, Inc.